MOTTO
in place of a Motto:
"Well that is NRL's experience ... meanwhile Rossi is pumping out 1MW from his grams of dirt. Stay tuned."
http://hotcopper.com.au/threads/navsea-on-replicating-lenr-low-energy-nuclear-reactions.2610973/page-3?post_id=16133855#.VhUV_OyqpHw
DAILY NOTES
In the spirit of the Motto, the explanation of DeChiaro is far from encouraging for
the future of PdD - and does not make that system better cognoscible and/or more manageable. The model he uses is far from Storms' nano-crack hydroton model.
Other: Jean Francois' theory breakthrough paper has a more direct title now, it is not more-or not only about "Energy Creation" but about "Reverting the Burden of Proof of the Non-Existence of LENR to Orthodox Physicists" A bright idea but the orthodox physicists have many methods of self-defending, Teflon brains is only one the invincible ones.
DAILY NEWS
First some echo-papers more or less
Luis DeChiaro of US NAVAL SYSTEMS command about replicating Pons and Fleischmaan
http://www.e-catworld.com/2015/10/06/louis-dechario-of-us-naval-sea-systems-command-navsea-on-replicating-pons-and-fleischmann/
It has generated many interesting discussions in more languages
Now interview with Andrea Rossi published at the Huffington Press
http://www.huffingtonpost.com/david-h-bailey/interview-with-andrea-ros_b_8248624.html
Some of the Biggest Names in Tech are interested in Fusion
http://newenergytreasure.com/2015/10/06/update-swedish-hot-fusion-professor-says-lenr-scientists-should-check-for-muons/
Claudio Pace: LenrTerni Filmati News e considerazioni finali
October 6th, 2015 at 4:58 PM
Sebastian:
I have, but I will not emit further publications on this issue until Prof Cook, our mathematician and I will have reached a rigorous and conclusive interpretation of all the data, included the data that will come from the analysis of the ashes of the 1MW plant n course of tests and R&D.
Warm Regards,
A.R.
Critical conditions needed for LENR aka Cold Fusion
From Louis DeChiaro
He discusses the atomic vibrational LENR initiation mechanism.
There is a lengthy list of prerequisite conditions for successful LENR.
1. It is necessary to set up conditions favoring the formation of molecular hydrogen (H2 or D2) inside the solid lattice for a certain range of possible values of lattice constant and for some fraction of the allowed values for electron momentum. This condition alone rules out almost ALL the elemental , because the electron density is just too large to permit molecules to form, except near vacancies in the lattice where a metal atom is absent.
accessible:
You can access the paper
"The release behavior of helium in palladium nanowire: A molecular dynamics study" here:
http://wikisend.com/download/ 210212/The_release_behavior_ of_helium_in_palladium_ nanowire.pdf
There is a lengthy list of prerequisite conditions for successful LENR.
1. It is necessary to set up conditions favoring the formation of molecular hydrogen (H2 or D2) inside the solid lattice for a certain range of possible values of lattice constant and for some fraction of the allowed values for electron momentum. This condition alone rules out almost ALL the elemental , because the electron density is just too large to permit molecules to form, except near vacancies in the lattice where a metal atom is absent.
2. The overall hydrogen loading fraction (ratio of hydrogen to palladium atoms, for example) must exceed the minimum threshold of about 0.88, otherwise the “party” never even gets started. Achieving this level of loading in Pd is not trivial.A nice Anonymous write re a paper I found yesterday but it was not freely
3. Conditions must be set up (by appropriate choice of materials parameters and achieved by the right kind of alloying) so that these hydrogen molecules can be caused to break up and then re-assemble very rapidly in a periodic time sequence when an appropriate physical quantity such as background electric charge, magnetic field, etc. is made to oscillate periodically over a small range.
4. The critical value of lattice constant at which this break up and reassembly occurs must lie very close to the nominal value of lattice constant for which the ground state energy of the lattice is minimal. This requirement alone rules out essentially all of the elemental lattices and about 99% of the binary and ternary alloys.
5. A departure from equilibrium must be established that will permit an external energy source (eg. the DC power supply in an electrolysis experiment and/or a pair of low power lasers as in the Letts/Hagelstein two laser experiment) to feed energy into the H-H or D-D stretching mode vibrations.
6. The nature of the lattice must permit these stretching mode vibrations to grow so large (over a period of perhaps many nanoseconds) that their amplitude becomes comparable to the lattice constant. When this occurs, the H atoms oscillate so violently that at the instants of closest approach, the curvature of the parabolic energy wells in which the atomic nuclei vibrate will become perturbed
7. When the curvatures of the parabolic energy wells of the nuclei are modulated at a frequency very near the natural resonant frequency, the quantum expectation value of the nuclear wave function spatial spread will oscillate with time in such a way that the positive-going peaks grow exponentially with time.
This was verified by doing a direct numerical solution of the time-dependent Schrodinger Equation for a single nuclear particle in a parabolic energy well. These oscillations in spatial spread will periodically delocalize the nucleus and facilitate the tunneling of adjacent nuclei into the Strong Force attractive nuclear potential well, giving rise to nuclear fusion at rates that are several tens of orders of magnitude larger than what one calculates via the usual Gamow Factor integral relationship.
Almost none of this material was obvious back in 1989. Without knowing what one is doing and why it works, the probability of achieving successful results via the so-called Edisonian method of trial and error is disappointingly low. Reasonable scientists and engineers can be forgiven for their difficulty in believing that there might exist ANY circumstances under which such things could be possible. And to be blunt, it was only in the last few months that the causal chain finally became clear.
The Naval Research Labs (NRL) ran over 300 experiments using pure Pd cathodes, all of them yielding negative results. Then somebody suggested that NRL should try an alloy of 90% Pd and 10% Rh. The very first such alloy cathode they tried yielded over 10,000 Joules of excess thermal energy – all from less than 1 gram of cathode material. I ran Density Functional Theory simulations on that alloy, and it, too, satisfies all the conditions given above, while pure Pd and pure Rh do not.
accessible:
You can access the paper
"The release behavior of helium in palladium nanowire: A molecular dynamics study" here:
http://wikisend.com/download/
No comments:
Post a Comment